Neural and Immunological Synaptic Relations
نویسندگان
چکیده
desch, K. Broadie, Nature Neurosci. 2, 965 (1999). 38. I. Augustin, C. Rosenmund, T. C. Südhof, N. Brose, Nature 400, 457 (1999). 39. J. E. Richmond, W. S. Davis, E. M. Jorgensen, Nature Neurosci. 2, 959 (1999). 40. C. Rosenmund et al., Neuron 33, 411 (2002). 41. U. Ashery et al., EMBO J. 19, 3586 (2000). 42. N. Brose, C. Rosenmund, J. Rettig, Curr. Opin. Neurobiol. 10, 303 (2000). 43. J. E. Richmond, R. W. Weimer, E. M. Jorgensen, Nature 412, 338 (2001). 44. J. H. Walent, B. W. Porter, T. F. J. Martin, Cell 70, 765 (1992). 45. A. Elhamdani, T. F. Martin, J. A. Kowalchyk, C. R. Artalejo, J. Neurosci. 19, 7375 (1999). 46. M. Rupnik et al., Proc. Natl. Acad. Sci. U.S.A. 97, 5627 (2000). 47. R. Renden et al., Neuron 31, 421 (2001). 48. T. Voets, N. Brose, J. Rettig, unpublished data. 49. K. D. Gillis, R. Mössner, E. Neher, Neuron 16, 1209 (1996). 50. M. Criado, A. Gil, S. Viniegra, L. Gutierrez, Proc. Natl. Acad. Sci. U.S.A. 96, 7256 (1999). 51. R. R. Gerona, E. C. Larsen, J. A. Kowalchyk, T. F. J. Martin, J. Biol. Chem. 275, 6328 (2000). 52. S. Sugita, O. H. Shin, W. Han, Y. Lao, T. C. Südhof, EMBO J. 21, 270 (2002). 53. T. Voets et al., Proc. Natl. Acad. Sci. U.S.A. 98, 11680 (2001). 54. J. B. Sørensen et al., Proc. Natl. Acad. Sci. U.S.A. 99, 1627 (2002). 55. K. Reim et al., Cell 104, 71 (2001). 56. M. G. Chheda, U. Ashery, P. Thakur, J. Rettig, Z.-H. Sheng, Nature Cell Biol. 3, 331 (2001). 57. T. Xu et al., Cell 99, 713 (1999). 58. D. Bruns, personal communication. 59. L. E. Dobrunz, C. F. Stevens, Neuron 18, 995 (1997). 60. C. Rosenmund, J. D. Clements, G. L. Westbrook, Science 262, 754 (1993). 61. N. A. Hessler, A. M. Shirke, R. Malinow, Nature 366, 569 (1993). 62. V. N. Murthy, T. J. Sejnowski, C. F. Stevens, Neuron 18, 599 (1997). 63. C. Rosenmund, C. F. Stevens, Neuron 16, 1197 (1996). 64. J. H. Bollmann, B. Sakmann, J. G. G. Borst, Science 289, 953 (2000). 65. R. Schneggenburger, E. Neher, Nature 406, 889 (2000). 66. L.-G. Wu, J. G. G. Borst, Neuron 23, 821 (1999). 67. T. Sakaba, E. Neher, J. Neurosci. 21, 462 (2001). 68. , Neuron 32, 9638 (2001). 69. E. Neher, T. Sakaba, J. Neurosci. 21, 444 (2001). 70. T. Sakaba, E. Neher, Proc. Natl. Acad. Sci. U.S.A. 98, 331 (2001). 71. A. Betz et al., Neuron 30, 183 (2001). 72. M. L. Harlow, D. Ress, A. Stoschek, R. M. Marshall, U. J. McMahan, Nature 409, 479 (2001). 73. We thank members of our laboratories for their contributions, particularly U. Ashery and J. Sørensen for supplying parts of Fig. 1. Work in our laboratories has been funded in part by the Deutsche Forschungsgemeinschaft (SFB 523 to E.N. and SFB 530 to J.R.).
منابع مشابه
The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملSignaling at neuro/immune synapses.
Immunological and neural synapses share properties such as the synaptic cleft, adhesion molecules, stability, and polarity. However, the mismatch in scale has limited the utility of these comparisons. The discovery of phosphatase micro-exclusion from signaling elements in immunological synapses and innate phagocytic synapses define a common functional unit at a common sub-micron scale across sy...
متن کامل